Skip to content

Causal inference

Frameworks

Potential outcomes framework

Let \(D_i\) (for dummy) be a binary variable indicating whether individual \(i\) receives the treatment (\(D_i=1\)) or not (\(D_i=0\)). Let \(Y^1_i\) be the potential outcome for individual \(i\) under treatment, and \(Y^0_i\) be the potential outcome for individual \(i\) without treatment. The observed outcome \(Y_i\) can be expressed as

\[\begin{equation} Y_i \equiv Y_i^1 \, \mathbb{1}\{ D_i = 1 \} + Y_i^0 \, \mathbb{1}\{ D_i = 0 \} \end{equation}\]

or

\[\begin{equation} Y_i \equiv \begin{cases} Y_i^1 & \text{if } D_i = 1 \\ Y_i^0 & \text{if } D_i = 0 \end{cases} % . \end{equation}\]

See also:

Graphical models (DAGs)

Structural equation models

Parameters of interest

ITE

TBD

ATE

TBD

ATT

TBD
TBD

LATE

TBD

MTE

TBD

Selection

Selection on observables

Selection on unobservables