Data description
Resources¶
Introduction¶
Useful Packages¶
Sample description¶
TBD
Summary of variables¶
All variables¶
Using skimr
Using summarytools
data_summary <- summarytools::dfSummary(
dataset_xxx,
varnumbers = TRUE,
labels.col = if_label,
graph.magnif = 1,
valid.col = FALSE,
na.col = TRUE,
style = "grid",
plain.ascii = FALSE,
max.string.width = 25,
split.table = 30,
tmp.img.dir = "/tmp"
)
summarytools::view(
data_summary,
footnote = NA,
file = file.path(path_html, paste0(name, "_summary.html"))
)
Continuous variables¶
Categorical variables¶
Missing values¶
Correlation analysis¶
TBD
-
Pearson's correlation coefficient (\(\rho\))
-
Rank correlation coefficients
Correlation coefficients¶
Visualization¶
Patterns across dimensions¶
TBD
Subgroup comparisons¶
Summary across waves¶
Time trends¶
Case studies¶
TBD